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Abstract—This study examined an important debate in 
Human-Robot Interaction (HRI) research: the suitability of non-
physically non-collocated robots instead of physically collocated 
robots for HRI research. This meta-analysis (N=34 studies) exam-
ined the equivalence of physically and non-physically collocated 
robots in HRI research, focusing on anthropomorphism, social 
presence, and user engagement. No significant differences were 
found, suggesting that non-physical representations are viable 
alternatives. However, observed heterogeneity indicates potential 
moderating factors (e.g., task complexity, user characteristics, 
design features) warranting further investigation. These findings 
inform choices in resource-constrained environments. 

Index Terms—Human-Robot Interaction, Meta-Analysis, 
Robot Type, Embodiment 

I. INTRODUCTION 

In the human–robot interaction (HRI) field, many studies 
have utilized non-physically collocated robots rather than 
physically collocated robots to explore research questions [1], 
[2]. These non-physically collocated robots take many forms 
based on the type and nature of the media used, including com-
puter simulations, video recordings, photographs, and digital 
models of robots represented via virtual reality [3]–[5], on-
screen simulations [6]–[8], and even videos or printed images 
[9], [10]. These non-physical representations provide a more 
economical, convenient, and controlled way to gain insights 
into how people perceive and respond to robots [11]–[13]. 
This is particularly important in countries and institutions that 
lack the resources to maintain physical robots. 

However, a common and ongoing debate in the field 
concerns the validity of findings from studies that rely on 
non-physically collocated robots [14]–[18]. This concern is 
frequently highlighted in the limitations sections of these stud-
ies, as researchers question whether the results derived from 
non-physical representations of robots accurately reflect the 
dynamics of humans’ in-person interactions with physically 
collocated robots. More specifically, there is an ongoing debate 
on whether robots non-physically collocated robots can elicit 
the same level of social presence, anthropomorphism, and 
engagement as physically collocated robots [19]–[22], all key 
drivers of trust, acceptance, and attitudes towards robots [21], 
[23]–[33]. Therefore, this issue poses a significant challenge 
to the HRI field, because it not only calls into question the 
validity of existing results and deployed measures but also 
shapes future research. 

Existing research comparing physically and non-physically 
collocated robots yields inconsistent findings regarding the 
impact of embodiment on HRI outcomes [19]–[22]. This 
inconsistency hinders a clear understanding of the influence 
of robot interaction modality. Further research is needed to 
determine the overall effect of embodiment on HRI outcomes. 

This study contributes to the ongoing debate regarding the 
impact of physical collocation in HRI. Our findings suggest 
that the discourse should shift from whether differences exist 
between physically and non-physically collocated robots to 
identifying the contexts in which these differences may be-
come significant. Specifically, this study challenges previous 
qualitative findings suggesting superior social presence with 
physical robots [19], [20]. It also partially corroborates ex-
isting meta-analyses on anthropomorphism while highlighting 
inconsistencies regarding objective outcomes of engagement 
[21], [22]. Finally, it underscores the need for contextualized 
research focusing on functional embodiment and holistic de-
sign approaches. 

II. BACKGROUND 

A. Embodiment Hypothesis 

The Embodiment Hypothesis, rooted in embodied cognition, 
originates in the work of philosophers like Maurice Merleau-
Ponty and George Lakoff, who emphasized the role of lived 
experience in shaping cognition [34], [35]. Embodied cogni-
tion posits that cognitive functions are deeply integrated with 
physical experiences [36], challenging traditional dualistic 
views of the mind and body [37]. This perspective suggests 
that cognition is not solely a product of internal representations 
but is shaped and influenced by embodied experiences. 

Although the Embodiment Hypothesis has gained consid-
erable support, it has also faced criticism. Some argue that it 
overemphasizes the role of the body and underestimates the 
importance of abstract, amodal representations in cognition 
[38]. Others contend that, while embodiment might play a 
role, it might not be as central or universal as proponents of 
the embodiment hypothesis claim [39]. Furthermore, scholars 
like Ziemke [40] distinguish between physical embodiment 
and functional embodiment. The latter emphasizes the role of 
a robot’s behaviors and functional capabilities in shaping its 
perceived presence. This suggests that interactive function is 
as important as physical form. 
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B. Embodiment Hypothesis in HRI 

The original Embodiment Hypothesis, built on the work of 
Merleau-Ponty and Lakoff, suggested that our bodily experi-
ence and physical interactions with the world fundamentally 
shape our perceptions, thoughts, and language [41]–[43]. In the 
HRI literature, the Embodiment Hypothesis is used to refer 
to the assertion that the robot’s “physical embodiment can 
increase engagement and enjoyment in social interactions with 
humans” [20, Pg. 255]. Whereas scholars such as Merleau-
Ponty and Lakoff assert that our perception of the world is 
rooted in our bodily experiences, the HRI literature asserts 
that our reaction to the other (e.g., robot) is influenced by that 
other’s physical embodiment or lack thereof. 

In this paper, we focus on the HRI-specific version of 
the Embodiment Hypothesis because this version drives the 
discussion around the need for a physically collocated robot. 
Indeed, if a robot’s physical form significantly influences how 
humans perceive and interact with robots [44], [45], it may 
be that users interact with physically collocated and non-
collocated robots in different ways [22], [32], [44]. 

HRI’s Embodiment Hypothesis has generated considerable 
attention in HRI, including numerous meta-analyses and lit-
erature reviews [19]–[22]. These studies focused on three 
key HRI concepts: anthropomorphism, social presence, and 
engagement. These concepts are considered crucial in under-
standing how users perceive robots differently when presented 
non-physically, making them key factors for comparing the 
impact of non-physically collocated and physically collocated 
robots. 

Anthropomorphism, defined as the attribution of human-like 
characteristics to non-human agents [46], has been shown to 
influence performance, acceptance, attitudes, and trust toward 
robots [21], [32], [33]. Social presence, characterized by the 
experience of non-physical or artificial agents as real social 
actors [47], has been linked to trust, acceptance, and positive 
attitudes toward technology in general [48]–[50] and robots in 
particular [29]–[31]. Finally, engagement, defined as the user’s 
intent to maintain a connection with a robotic agent while 
performing a task [51], has been associated with performance, 
satisfaction, enjoyment, and acceptance of robots [23]–[28]. 

Figure 1 highlights how the relationship between phys-
ical embodiment and user perceptions of robots has been 
studied through qualitative and quantitative methods. This 
paper diverges from previous research in several key aspects. 
Qualitative reviews have suggested that physical robots elicit 
higher social presence and engagement [19], [20]. In con-
trast, we employed a quantitative meta-analysis to examine 
these relationships. Previous quantitative meta-analyses have 
explored the downstream effects of anthropomorphism and 
the potential moderation of measurement type [21], [22]. 
One study found no significant differences in anthropomor-
phism effects between non-physically collocated robots and 
physically collocated robots [21], while another revealed that 
physical embodiment leads to higher outcomes for objectively 
measured variables but not for subjective measures [22]. Our 

study uniquely examined the upstream effects of robot inter-
action modality on anthropomorphism, social presence, and 
engagement as direct outcomes. By doing so, we contribute 
a comprehensive and nuanced understanding of the ongoing 
debate about the equivalence of non-physically collocated 
and physically collocated robots in human–robot interaction 
research. Figure 1 visually represents our study’s position 
within the existing literature, illustrating the current landscape 
of reviews and meta-analyses. As such, the paper’s research 
question is as follows: 

Fig. 1: This figure illustrates the current state of research. 
Arrows indicate relationships between variables that have been 
explored in meta-analyses or reviews. Arrows without refer-
ences suggest that these relationships have not been examined. 

RQ: To what extent do subjects’ perceptions of an-
thropomorphism, social presence, and engagement 
differ between non-physically collocated and physi-
cally collocated robots? 

Addressing this research question is crucial because it has 
far-reaching implications for the validity of HRI research. 
If non-physically collocated robots yield fundamentally dif-
ferent results compared to physically collocated robots, a 
significant portion of existing HRI knowledge may be called 
into question. This concern is particularly pressing given the 
prevalence of online studies using non-physically collocated 
robots and their role in validating many subjective mea-
surement instruments that are widely used in the field [21]. 
Consequently, the potential invalidity extends beyond studies 
employing non-physically collocated robots to those utilizing 
measures developed with such representations, even when 
conducted with physically collocated robots. This situation 
underscores the critical need to evaluate the comparability 
between non-physically collocated and physically collocated 
robots comprehensively. 

The subsequent sections detail our methodology, analysis, 
and results, outlining the procedures for literature identification 
and meta-analytic techniques. Comprehensive methodological 
details, including robustness tests, are provided in the Ap-
pendix. We then discuss the implications of our findings in 
the context of existing literature, followed by an examination 
of study limitations. The paper concludes by synthesizing key 
insights and their significance for human–robot interaction. 
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III. METHOD 

For this study we used Preferred Reporting Items for 
Systematic Review and Meta-Analysis (PRISMA)-compliant 
systematic review and meta-analysis to compare responses to 
physically and non-physically collocated robots. Our method-
ology follows established HRI meta-analytic approaches [52]. 
This methodology mirrors the approaches of other HRI meta-
analyses [53]–[56]. All data and code used for this analysis 
are visible at: 10.5281/zenodo.14270756. 

A. Inclusion & Exclusion Criteria 

This study employed a multi-level screening approach 
where criteria were progressively tightened at each stage. At 
the highest level (level-1 inclusion criteria), publications were 
deemed eligible for inclusion if they were classified as aca-
demic works (peer-reviewed publications, theses, dissertations, 
etc.), written in English, their titles or abstracts contained one 
or more of our search terms, they appeared empirical, and they 
included interactions between at least one human and at least 
one physically collocated or non-physically collocated robot. 
At the second level (level-2 inclusion criteria), publications 
were deemed eligible if they met all prior screening criteria, 
focused on non-physically collocated and physically collocated 
embodied physical action (EPA) robots, and included interac-
tions between at least one human and at least one physically 
collocated and non-physically collocated robot. At the third 
level (level-3 inclusion criteria), publications were deemed 
eligible for inclusion if they met all prior screening criteria and 
directly compared outcomes of interactions with physically 
collocated robots and those with non-physically collocated 
robots. In cases where uncertainty existed at any level of 
inclusion, publications were deemed eligible and subjected to 
the subsequent level of screening. 

In addition to these inclusion criteria, a set of exclusion 
criteria was applied. These exclusion criteria were applied 
at all levels. Specifically, publications were excluded if they 
focused on telepresence robots, did not compare physically 
collocated and non-physically collocated robots on the same 
outcome, utilized drastically different robots in the non-
physical condition from those in the physical condition, or 
did not contain any direct interaction between a human and 
robot. 

B. Data Sources and Database Search 

This systematic review and meta-analysis leveraged Google 
Scholar, IEEE Explore, Scopus, and the ACM Digital Library. 
Our search took place between May 20 and June 1 of 
2024. The terms used were developed through examination of 
keywords and consultation with a subject specialist librarian. 
The keywords used were: virtual, simulated, remote, simula-
tor, disembodied, computer simulation, video recording, real-
world, real life, physical, physical world, collocated, embod-
ied, compare, comparison, contrast, differences, human–robot 
interaction, HRI, human–robot collaboration, and social robot. 

Our search returned 73,558 results before accounting for 
duplicates, with 73,200 resulting from Google Scholar alone. 

In light of this, we adopted a pre-screening process for Google 
Scholar because its search algorithm provides a significantly 
broader range of results than the other databases. This process 
consisted of systematically examining each database’s results 
on a page-by-page basis until no page provided a single result 
that met our level-1 inclusion criteria. For Google Scholar, 
the first 24 pages (10 results per page) passed this criterion, 
with the 25th page of results failing to contain a single 
result that passed our level-1 inclusion criteria. After these 
processes, a total of 805 total results across databases were 
extracted, de-duplicated, and exposed to title and abstract 
screening. These results were then extracted for screening via 
native .BIB or .RIS exporters in the case of IEEE Explore, 
Scopus, and the ACM Digital Library and via the Publish or 
Perish application [57] for Google Scholar. Results were then 
compiled in RAYYAN for further processing [58]. 

C. Study Selection and Screening 

De-duplication, title, and abstract screening took place in 
RAYYAN [58]. RAYYAN is a free web and mobile app that 
helps expedite the initial screening of abstracts and titles and 
has been leveraged in many systematic reviews and meta-
analyses, as evidenced by the software’s 13,000 citations. 
Leveraging RAYYAN, we de-duplicated our search results in 
a semi-automatic fashion, creating a list of likely duplicate 
records and then manually screening them. This de-duplication 
process removed 173 records, leaving 632. 

Title and abstract screening was performed in two phases, 
with level-1 inclusion criteria resulting in the exclusion of 289 
records and level-2 inclusion criteria resulting in the exclusion 
of an additional 259 records. After this, a full-text screening 
was conducted based on our level-3 inclusion criteria. This 
screening incorporated the 84 records resulting from prior 
screening and an additional 58 records identified in prior 
reviews [19], [20]. This process led to 77 relevant publications 
emerging from the review. Figure 2 summarizes this screening 
process. 

D. Categorization of Outcomes 

The various studies examined a wide range of outcomes, 
with most investigations assessing multiple outcomes. To 
categorize and streamline these findings, the research team 
conducted an open card sort to distill specific outcomes into 
broader constructs, or “bins.” Each team member grouped 
different outcomes and discussed these classifications collec-
tively until a consensus was reached on the suitability of 
the resulting groups. Ultimately, 16 distinct outcome bins 
were established. 1 Among these, anthropomorphism, social 
presence, and engagement outcomes were selected for detailed 
analysis in this study given their direct relevance to the 
Embodiment Hypothesis as conceptualized and examined in 
HRI. Of the included studies, 12 provided sufficient effect 
size data for anthropomorphism, 12 for social presence, and 10 
for engagement. We then classified the type of measure used 

1A detailed list of these outcome bins is presented in the appendix 
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Fig. 2: Prisma diagram summarizing study screening and 
inclusion procedures. 

for each of these outcomes as either subjective or objective. 
Subjective measures are psychological assessments that re-
quire judgment or interpretation and typically take the form of 
self-reports, while objective measures are directly observable 
behaviors such as gaze and interaction time [59]–[61]. Across 
these outcomes, only engagement utilized objective measures. 

E. Data & Effect Size Extraction 

Data from each study were extracted manually from each 
publication. This data included each paper’s title, abstract, 
sample size, independent variables, dependent variables, and 
the reliabilities (α). In addition, we logged whether the non-
physically collocated robots were presented to subjects on a 
2-D screen or via virtual reality (VR) technologies. In all cases, 
these data were entered into a PostgreSQL-based database and 
exported to a .xlsx spreadsheet. 

Using this spreadsheet, we then calculated effect sizes (r) 
based on the reported statistical information present for each 
study. These effect sizes reflect the magnitude of a treatment 
effect or the relative strength of a relationship [62]. In this 
meta-analysis, we utilized Pearson’s (r) values. This was the 
case because Pearson’s r is more frequently reported, easier 
to interpret, and is generally more popular as an effect size 
measure in meta-analyses [53], [56], [63], [64]. Pearson’s r 
was obtained directly from the selected publications where 

possible. However, when this was impossible, effect sizes were 
calculated using [65] or [66] based on the information reported 
in the associated publication. The appendix of this article 
shows additional details on how r was derived for each study. 

F. Statistical Methods 

1) Meta-Analytical Approach: The meta-analyses con-
ducted in this paper were done in the psychometric meta-
analysis tradition [67]. The psychometric approach to meta-
analysis involves correcting the distributions of observed cor-
relation coefficients to estimate the distribution of population 
correlation coefficients [62]. As a result, the estimation of 
effect sizes in this analysis was corrected based on sample size 
and measurement error (Cronbach’s α), producing an adjusted 
n that was used in analysis [67]. This differs from other meta-
analytical approaches as it produces a corrected effect size that 
is generally more reliable [68], [69]. Using these corrected 
effect sizes, we then calculated an average effect size (r̄) for 
each outcome. 

2) Heterogeneity: Heterogeneity in a meta-analysis rep-
resents the degree of variance present between effect sizes 
[62], [70]. Assessing heterogeneity is vital for meta-analyses 
because heterogeneity ultimately determines how reliable an 
average effect size is and how one should interpret it [70]. 
In cases where heterogeneity is high, it is likely that variance 
among effects is caused by more than measurement or random 
error alone [70]. This lowers the reliability of the average 
effect observed because its utility for explaining variance is 
reduced and therefore unaccounted for moderators may be 
present [62], [70]–[72]. In this paper we considered both 
I2 and Q statistics as our primary metrics of heterogeneity. 
Additional details on heterogeneity and its calculations are 
available in the appendix. 

3) Publication Bias: Publication bias is the degree to 
which “the research that appears in the published literature is 
systematically unrepresentative of the population of completed 
studies” [73, Pg.1]. We constructed and statistically assessed 
funnel plots to determine the publication bias present across 
the meta-analyses examined in this paper. Additional details 
on funnel plots and how they are assessed are in the appendix. 

4) Sensitivity & Outlier Detection: It was also important 
to ensure that our meta-analysis did not contain any studies 
that were outliers. To assess this, we conducted a leave-one-out 
sensitivity analysis. This analysis assists in identifying outliers 
by determining the impact that the exclusion of any single 
study has on overall findings. This is accomplished by running 
separate meta-analyses (one per study) excluding a different 
study each time. Results can then be inspected manually or 
via the check.outliers() function in r [74] to determine 
whether any of the analyses in our meta-analysis fell outside 
the 95% confidence interval of the total analysis of all other 
studies. In cases where this occurs, a study was considered an 
outlier and excluded from subsequent analysis [71], [74]. 

IV. STUDY & SAMPLE CHARACTERISTICS 

For the outcome of anthropomorphism, the average sample 
size of studies was n=63 (SD=34). Within this sample, 56% of 
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subjects on average were women indicating a relatively even 
distribution between male and female subjects 2 . The average 
age of subjects was 29 years (SD=17). The majority of studies 
examining anthropomorphism used screen-based non-physical 
representations (k=7) about as often as they used virtual re-
ality representations of robots (k=6). Anthropomorphism was 
measured across studies exclusively via subjective measures 
with the majority using sub-dimensions or adaptations of the 
Godspeed questionnaire (k=5) [75] or custom measures (k=5). 

For the outcome of social presence, the average sample 
size of studies was n=50 (SD=36). Within this sample, 46% 
of subjects on average were women, indicating a relatively 
even distribution between men and women. The average age 
of subjects was 31 years (SD=20). The majority of studies 
examining social presence used screen-based non-physical 
representations (k=7) as opposed to virtual reality represen-
tations of robots (k=4). Social presence was measured across 
studies via subjective measures in all but one case [76]. Of 
the subjective measures used, no single measure appeared 
dominant, with each study leveraging a related but different 
measure of social presence. 

For the outcome of engagement, the average sample size 
of studies was n=41 (SD=32). Within this sample, 50% of 
subjects on average were women, indicating a relatively even 
distribution between male and female subjects. The average 
age of subjects was 28 years (SD=25). The majority of studies 
examining engagement used screen-based non-physical repre-
sentations (k=7) as opposed to virtual reality representations 
of robots (k=2). Engagement was measured across studies 
via subjective measures (k=5) and objective (observational) 
measures (k=6) cases. No subjective or objective measure 
emerged consistently across these studies, with each study 
using a unique measure of engagement. A detailed breakdown 
of these measures and other study characteristics is presented 
in the appendix. 

V. META-ANALYTIC RESULTS 

A. Anthropomorphism 

The overall corrected effect of robot interaction modal-
ity on subjects’ perceptions of anthropomorphism indicated 
a non-significant overall effect (k=11, r̄2=-0.01, 95% CI;[-
0.18,0.15]). This implies that robot interaction modality does 
not significantly impact subjects’ perceptions of anthropomor-
phism. This analysis was seen as relatively robust given mini-
mal publication bias (Egger’s t = 0.32, df = 9, P = 0.76) and 
relatively stable results in leave-one-out sensitivity analysis 
after the removal of outliers3 . Significant heterogeneity, how-
ever, was observed (Q(df = 10) = 28.11, p − val = 0.002; 
I2 = 64%) ), indicating that a large portion of variance among 
the observed effect sizes may be due to sources other than 

2Studies did not provide data on the number of non-binary subjects 
3 [77] was detected as an outlier and removed from this analysis. Table I 

in the appendix shows the sensitivity analysis where said outlier was detected 
and an analysis including this outlier is presented in this paper’s appendix. 
Results with outliers included did not differ significantly from the results 
shown here. 

random error. As a result, it is likely that moderators may 
be at play and additional analysis is needed [62], [70]. These 
results are summarized in row 1 of table I and are visually 
presented in Figure 3. 

Meta-Analysis of Anthropomorphism with Individual Correction Heterogeneity 

Analysis k N ¯ r Var r CI LL CI UL Sig I2 Q 

Non-physical (Both) 11 642 -0.015 0.049 -0.178 0.151 N 64% P=0.11 

Screen 7 501 -0.07 0.025 -0.231 0.084 N 42.37% P=0.49 

VR 6 326 -0.025 0.091 -0.381 0.339 N 79% P < 0.001 

TABLE I: Meta-analytical results for anthropomorphism in-
cluding sub-group analysis by non-physical representation. 

Fig. 3: Forest plot for anthropomorphism illustrating corrected 
effect sizes for the impact of robot interaction modality by type 
of non-physical representation. Each dot represents the effect 
size of a study, and the line around it shows the uncertainty in 
that estimate. The overall effect size is shown at the bottom 
as a composite of the effect sizes above. 

1) Sub-Group Analysis: Given the degree of heterogene-
ity detected in our overarching meta-analysis, we conducted 
a follow-up sub-group analysis. We did this to determine 
whether the variance observed between effect sizes (i.e., 
heterogeneity) might be attributable to one or more moderating 
factors. In particular, we hypothesized that the type of non-
physical representation used (screen-based or VR) may deter-
mine when said non-physical representation is more or less 
influential. Results of sub-group analysis, however, indicated 
that this was unlikely. In particular, neither the sub-group anal-
ysis for screens alone (k=7, r̄2=-0.07, 95% CI;[-0.23,0.08]) 
nor analysis for virtual reality (k=6, r̄2=-0.03, 95% CI;[-
0.38,0.34]) observed effects for robot interaction modality. 
It is worth noting, however, that the confidence intervals 
for the sub-group analysis on screens (CI[−0.23, 0.08]) did 
appear relatively narrow and that heterogeneity in this group 
(Q(df = 6) = 10.41, p − val = 0.11; I2 = 42.37%) was 
reduced to a point where additional moderators were unlikely 
to manifest. This indicates that in the case of screens, some 
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effect on anthropomorphism may be present but that said effect 
may merely be too small to register with the current sample 
(k = 7 studies). Table I summarizes these findings in rows 2 
and 3, while Figure 3 illustrates these effects visually. 

B. Social Presence 

The overall corrected effect of robot interaction modality 
on subjects’ perceptions of social presence indicated a non-
significant overall effect (k=9, r̄2=-0.12, 95% CI;[-0.41,0.16]). 
This implies that robot interaction modality does not have an 
impact on the degree to which humans see said robots as 
possessing social presence. This analysis was seen as relatively 
robust given minimal publication bias (Egger’s t = 1.09, 
df = 7, P = 0.31) and relatively stable results in leave-
one-out sensitivity analysis after the removal of outliers. 4 

It is important to note, however, that sizable heterogeneity 
was visible across this overall effect (Q(df = 8) = 3.87, 
p − val > 0.001; I2 = 79%), indicating that a large portion 
of variance among the observed effect sizes may be due to 
sources other than random error. As a result, it is likely that 
moderators may be at play and additional analysis is needed 
[62], [70]. These results are summarized in row 1 of table II 
and are visually presented in Figure 4. 

Meta-Analysis of Social Presence With Individual Correction Heterogeneity 

Analysis k N ¯ r Var r CI LL CI UL Sig I2 Q 

Non-Physical (Both) 9 376 -0.12 0.12 -0.41 0.16 N 79% P<0.001 

Screen 7 302 -0.25 0.1 -0.57 0.04 N 77% P<0.001 

VR 4 259 -0.001 0.06 -0.45 0.45 N 74% P=0.007 

TABLE II: Meta-analytical results for social presence includ-
ing sub-group analysis by non-physical representation type. 

1) Sub-Group Analysis: Given the degree of heterogene-
ity detected in our overarching meta-analysis, we conducted 
a follow-up sub-group analysis. We did this to determine 
whether the variance observed between effect sizes (i.e., 
heterogeneity) might be attributable to one or more moderating 
factors. In particular, we hypothesized that the type of non-
physical presentation used (screen-based or VR) may deter-
mine when the impact of using a non-physical representation 
is more or less influential in terms of social presence. Similar 
to our results for anthropomorphism, however, these results 
indicated that this was unlikely. In particular, neither the 
sub-group analysis for screens alone (k=7, r̄2=-0.25, 95% 
CI;[-0.57,0.04]) nor that for virtual reality (k=4, r̄2=-0.001, 
95% CI;[-0.45,0.45]) observed effects for robot interaction 
modality. This, in combination with no sizable shifts in het-
erogeneity statistics – Q(df = 6) = 2.7, p − val < 0.001; 
I2 = 77.64% and Q(df = 3) = 11.88, p − val = 0.008; 
I2 = 74.75% respectively – indicates that the type of non-
physical representation (VR vs. screen) is unlikely to impact 
the overall effect of using non-physical representations of 
robots as opposed to physically collocated robots with regard 

4 [16], [31], [78] were detected as outliers and removed from this analysis. 
The appendix shows the sensitivity analysis where said outliers were detected 
and an analysis including these outliers is available in the appendix. Results 
with outliers did not differ significantly from the results shown here 

Fig. 4: Forest plot for social presence illustrating corrected 
effect sizes for the impact of robot interaction modality by 
type of non-physical representation. 

Meta-Analysis of Engagement With Individual Correction Heterogeneity 

Analysis k N ¯ r Var r CI LL CI UL Sig I2 Q 

Non-Physical (Both) 9 402 -0.19 0.09 -0.41 0.04 N 75% P<0.001 

Objective Measures 5 318 -0.17 0.12 -0.61 0.26 N 88% P<0.001 

Subjective Measures 5 146 -0.08 0.05 -0.39 0.22 N 22% P=0.27 

TABLE III: Meta-analytical results for engagement, including 
sub-group analysis based on the type of engagement measure. 

to social presence. Table II summarizes these findings in rows 
2 and 3 while Figure 4 illustrates these effects visually. 

C. Engagement 

The overall corrected effect of robot interaction modality on 
subjects’ engagement indicated a non-significant overall effect 
(k=9, r̄2=-0.19, 95% CI;[-0.42,0.04). This implies that robot 
interaction modality does not have an impact on the degree to 
which humans engage with said robots. This analysis was seen 
as relatively robust given minimal publication bias (Egger’s 
t = −0.56, df = 7, P = 0.59) and relatively stable results in 
leave-one-out sensitivity analysis after the removal of outliers5 . 
It is important to note, however, that sizable heterogeneity is 
visible across this overall effect (Q(df = 8) = 3.2, p − val > 
0.001; I2 = 75%), indicating that a large portion of variance 
among the observed effect sizes may be due to sources other 
than random error. As a result, it is likely that moderators may 
be at play and additional analysis is needed [62], [70]. These 
results are summarized in Table III and are visually presented 
in Figure 5. 

1) Sub-Group Analysis: Given the heterogeneity detected in 
our overarching meta-analysis, we sought to conduct a follow-
up sub-group analysis. Due to the small number of studies 

5 [79] was detected as an outlier and removed from this analysis. Table III in 
the appendix shows the sensitivity analysis where said outlier was detected and 
an analysis including this outlier is visible in this paper’s appendix. Results 
with outliers included do not differ significantly from the results shown here. 
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Fig. 5: Forest plot for engagement illustrating corrected effect 
sizes for the impact of robot interaction modality divided by 
type of engagement measure. 

that used virtual reality as their non-physical representation 
of a robot (k = 2), however, such sub-group analysis was 
not possible. That said, engagement was unique from our 
other outcomes in that this outcome was examined with 
both subjective and objective measures. Given that the type 
of measurement is influential for other outcomes [21], we 
therefore explored the possibility of measurement type acting 
as an alternative moderator. In particular, we hypothesized that 
the kind of outcome measure used (objective or subjective) 
may determine when the impact of using a non-physical 
representation is more or less influential. 

Results of this sub-group analysis, however, indicated that 
this was unlikely. In particular, neither the sub-group analysis 
for objective measures (k=5, r̄2=-0.17, 95% CI;[-0.61,0.26]) 
nor that for subjective measures (k=5, r̄2=-0.08, 95% CI;[-
0.39,0.22]) observed effects for robot interaction modality. 
Notably, heterogeneity was reduced in the sub-group using 
subjective measures (Q(df = 4) = 0.25, p − val = 0.27; 
I2 = 23%), however, the lack of a similar trends in the case 
of objective measures (Q(df = 4) = 32, p − val < 0.001; 
I2 = 88%), as well as non-significant overall effects imply 
that this reduction is likely due to other reasons. These findings 
indicate that the type of measure used is unlikely to impact the 
overall effect of using non-physical representations of robots 
as opposed to physically collocated robots with regard to 
engagement. Table III summarizes these findings in rows 2 
and 3 while Figure 5 illustrates these effects visually. 

VI. SUMMARY OF RESULTS 

Overall, our results indicate that robot interaction modal-
ity does not significantly impact humans’ perceptions of a 
robot’s anthropomorphism or social presence. In addition, it 
does not appear that robot interaction modality significantly 

affects humans’ engagement with robots. That said, each meta-
analysis conducted contained a strong degree of heterogeneity 
(i.e., variance among effect sizes) that was not accounted for. 
This indicates that moderators are likely present and may 
influence the effect of robot interaction modality on each of 
these outcomes. 

This study explored the non-physical representation type 
(virtual reality vs. screen) as one such moderator. Subgroup 
analysis, however, revealed that for social presence and anthro-
pomorphism, the method of non-physical representation was 
not a moderator; as for engagement, insufficient studies em-
ploying virtual reality precluded a meaningful comparison. In 
addition to non-physical representation type, we explored the 
possibility that measurement or outcome type was a moderator. 
This was only possible for the outcome of engagement given 
that neither anthropomorphism nor social presence studies 
utilized objective measures. Results of this sub-group analysis 
were again non-significant, indicating that – at least in the 
case of engagement – the type of measure did not appear to 
moderate the impact of robot interaction modality. 

VII. DISCUSSION 

This study challenges the assumption underlying the Em-
bodiment Hypothesis, prompting its re-evaluation in HRI. 
This paper directly contradicts prior qualitative reviews sug-
gesting that physical robots elicit higher social presence and 
engagement [19], [20]. In doing so, our findings indicate 
that the perceived advantages of a physical embodiment may 
be less pronounced or consistent than previously thought. 
However, it is important to note that the prior studies [19] 
and [20] were qualitative analyses of the literature as opposed 
to the quantitative analyses conducted in this paper. As a 
result, [19] and [20] did not examine statistical data directly. 
Although their approach was valid, this alone could explain 
the differences. 

Our paper also corroborates and contradicts prior meta-
analyses on the impact of robot interaction modality in HRI 
[21], [22]. On the one hand, our study aligns with previous 
findings because it did not observe significant differences 
between modalities for anthropomorphism or for subjective 
outcomes more broadly. On the other hand, however, this pa-
per’s results contradict Roesler et al. [22] because differences 
between non-physically collocated and physically collocated 
robots were observed for objective outcomes in [22] but were 
not in our meta-analysis with regard to engagement. 

Scholars like Dove [38] and Goldinger et al. [39] argued 
that the role of physical embodiment might be overstated and 
that abstract, amodal representations can facilitate effective 
interaction. Our paper’s results also support Ziemke’s [40] dis-
tinction between physical and functional embodiment, where 
the functional capabilities of robots, regardless of physicality, 
can drive social presence, emphasizing the importance of 
behavioral and interactive design over merely physical form. 
It is essential to note that these findings do not directly 
speak to Maurice Merleau-Ponty and George Lakoff’s version 
of the Embodiment Hypothesis. Interestingly, Merleau-Ponty 
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and Lakoff’s Embodiment Hypothesis may be invaluable to 
understanding how physical robots interact with the world 
in comparison to chatbots or other non-physical robots. As 
such, future work is needed to examine this version of the 
Embodiment Hypothesis more directly. 

A. Implications for Theory and Future Research 

Our results suggest a paradigm shift is necessary for HRI 
research. Rather than focusing on whether differences exist 
be- tween physically collocated and non-physically collo-
cated robots, future investigations should identify the specific 
contexts and conditions under which these differences may 
become significant. This nuanced approach will provide a 
more comprehensive understanding of the role of embodiment 
in HRI. To address this, further studies, particularly those 
incorporating qualitative methodologies, are essential in the 
following areas. 

First, it is crucial to investigate contextual factors that 
explain when there may or may not be differences between 
non-physical and physical robots. This includes examining 
the impact of different levels and types of embodiment (e.g., 
humanoid vs. non-humanoid, degree of anthropomorphism, 
etc.) [80] on key interaction outcomes, including anthropo-
morphism, social presence, and engagement. 

Second, examining individual differences is essential for 
comprehending how personal characteristics, such as person-
ality traits, technology experiences, and cultural backgrounds, 
influence user engagement with robots [81]. Such an under-
standing can lead to more tailored and effective interactions, 
providing valuable insights for the design and deployment 
of non-physically collocated and physically collocated robots 
across a wide range of applications. 

Third, beyond physical embodiment, the concept of func-
tional embodiment merits consideration. This perspective em-
phasizes the impact of a robot’s behaviors, capabilities, and 
environmental interactions on human perceptions [40]. For 
example, a robot’s task performance, communication efficacy, 
and responsiveness may be as influential as its physical form 
in shaping user experiences. However, further research is 
necessary to delineate the boundary conditions of this effect 
and its relative importance. 

Fourth, future research should prioritize ecological valid-
ity to improve the generalizability of findings in real-world 
contexts. This focus extends beyond the simple comparison 
of physical versus non-physical robots and underscores the 
significance of contextual factors in shaping HRI. Researchers 
must consider interrelated elements such as task type and 
nature, user expectations, environmental context, and robot 
behavior and appearance to achieve high ecological validity. 
Understanding how these factors collectively influence user 
perceptions is essential for bridging the gap between labora-
tory findings and real-world applications. 

Fifth, future studies should aim to develop an integrated 
theoretical framework that identifies the conditions under 
which non-physically collocated robot use is appropriate or in-
appropriate relative to the use of physically collocated robots. 

This approach should incorporate a deeper understanding of 
a task’s nature, user’s expectations, and environmental con-
texts. Addressing these research directions can advance our 
knowledge of the conditions under which non-physically col-
located and physically collocated robot representations may 
yield divergent outcomes. This knowledge will provide crucial 
guidance on using non-physically collocated robots versus 
physically collocated robots across different applications and 
contexts within HRI research. 

Finally, the results of this study also provide implications 
for design. Our findings, along with the existing literature, 
suggest a need for a holistic design approach that prior-
itizes behavioral capabilities and contextual responsiveness 
over physical presence. Designers should, therefore, focus on 
creating interactive and emotionally responsive functionalities 
and exploring innovative ways to replicate presence digitally. 
This can provide various benefits, including the more effective 
deployment of virtual agents in scenarios where physical 
robots are impractical due to logistical or cost constraints. This 
expands the range of applications for which non-physically 
collocated robots can be used, which increases their scalability. 

VIII. LIMITATIONS AND FUTURE WORK 

As with any systematic review and meta-analysis, our cur-
rent results reflect certain limitations within the literature. In 
particular, while sample diversity was high regarding gender, 
the average age of subjects was relatively young (under 35). 
As a result, these findings speak primarily to a younger 
population, and future work is required to explore whether 
these results shift with the inclusion of older populations. 

The comparison between non-physically collocated and 
physically collocated robots often involves moderators and 
confounding variables, complicating the isolation of embodi-
ment effects [20]. This study addressed these variables in two 
ways. First, by conducting a meta-analysis, it overcame the 
limitations of individual HRI studies, including confounders 
or moderators, by consolidating findings across studies [62], 
[70].Second, it focused exclusively on studies that directly 
compared non-physically collocated and physically collocated 
robots of the same type within the same study, creating 
a unique dataset that avoids issues from cross-study com-
parisons. Despite these efforts, unidentified confounders and 
moderators may have influenced the findings due to observed 
variance in effect sizes. As a result, the null result may be 
due to various issues other than embodiment alone. Future 
research should, therefore, explore possible confounders and 
moderators. 

IX. CONCLUSION 

These findings challenge traditional assumptions about 
physical embodiment in HRI, suggesting that robot designers 
should strategically leverage both non-physical and physical 
modalities based on application needs and user contexts. This 
research contributes to a more nuanced understanding of 
human-like presence in HRI, highlighting the complexity of 
achieving effective interaction beyond traditional boundaries. 
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